Affiliation:
1. Center for Distributive, Labor and Social Studies Argentine National Council of Scientific and Technological Research and National University of La Plata La Plata, Argentina
2. Center for Worker Innovation Argentine National Council of Scientific and Technological Research National University of Moreno and National University of La Plata La Plata, Argentina
Abstract
In this article, we present gsreg, a new automatic model-selection technique for cross-section, time-series, and panel-data regressions. Like other exhaustive search algorithms (for example, vselect), gsreg avoids characteristic path-dependence traps of standard approaches as well as backward- and forward-looking approaches (like PcGets or relevant transformation of the inputs network approach). However, gsreg is the first code that 1) guarantees optimality with out-of-sample selection criteria; 2) allows residual testing for each alternative; and 3) provides (depending on user specifications) a full-information dataset with outcome statistics for every alternative model.
Subject
Mathematics (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献