Global Search Regression: A New Automatic Model-selection Technique for Cross-section, Time-series, and Panel-data Regressions

Author:

Gluzmann Pablo1,Panigo Demian2

Affiliation:

1. Center for Distributive, Labor and Social Studies Argentine National Council of Scientific and Technological Research and National University of La Plata La Plata, Argentina

2. Center for Worker Innovation Argentine National Council of Scientific and Technological Research National University of Moreno and National University of La Plata La Plata, Argentina

Abstract

In this article, we present gsreg, a new automatic model-selection technique for cross-section, time-series, and panel-data regressions. Like other exhaustive search algorithms (for example, vselect), gsreg avoids characteristic path-dependence traps of standard approaches as well as backward- and forward-looking approaches (like PcGets or relevant transformation of the inputs network approach). However, gsreg is the first code that 1) guarantees optimality with out-of-sample selection criteria; 2) allows residual testing for each alternative; and 3) provides (depending on user specifications) a full-information dataset with outcome statistics for every alternative model.

Publisher

SAGE Publications

Subject

Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3