Approximate Bayesian Logistic Regression via Penalized Likelihood by Data Augmentation

Author:

Discacciati Andrea1,Orsini Nicola1,Greenland Sander2

Affiliation:

1. Unit of Biostatistics and Unit of Nutritional Epidemiology Institute of Environmental Medicine Karolinska Institutet Stockholm, Sweden

2. Departments of Epidemiology and Statistics University of California Los Angeles, CA

Abstract

We present a command, penlogit, for approximate Bayesian logistic regression using penalized likelihood estimation via data augmentation. This command automatically adds specific prior-data records to a dataset. These records are computed so that they generate a penalty function for the log likelihood of a logistic model, which equals (up to an additive constant) a set of independent log prior distributions on the model parameters. This command overcomes the necessity of relying on specialized software and statistical tools (such as Markov chain Monte Carlo) for fitting Bayesian models, and allows one to assess the information content of a prior in terms of the data that would be required to generate the prior as a likelihood function. The command produces data equivalent to normal and generalized log- F priors for the model parameters, providing flexible translation of background information into prior data, which allows calculation of approximate posterior medians and intervals from ordinary maximum likelihood programs. We illustrate the command through an example using data from an observational study of neonatal mortality.

Publisher

SAGE Publications

Subject

Mathematics (miscellaneous)

Reference30 articles.

1. A New Perspective on Priors for Generalized Linear Models

2. The log F: A Distribution for All Seasons

3. Maximum Likelihood, Profile Likelihood, and Penalized Likelihood: A Primer

4. Bayesian Posterior Distributions Without Markov Chains

5. CoveneyJ. 2008. firthlogit: Stata module to calculate bias reduction in logistic regression. Statistical Software Components S456948, Department of Economics, Boston College. http://econpapers.repec.org/software/bocbocode/s456948.htm.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3