Affiliation:
1. Department of Cell Biology & Neuroscience Rutgers University, Nelson Laboratories Piscataway, New Jersey,
Abstract
The mammalian cochlea is exquisitely designed to decompose complex sounds into their component frequencies, accounting in part for the superb auditory discrimination displayed by many species. To perform this task, numerous mechanical and electrical specializations are graded along the length of the cochlea that create a tonotopic map in which sounds of different frequencies produce maximal responses at different cochlear locations. Graded mechanical features include structural changes in the vibratory basilar membrane, on which the hair cell sensory receptors sit, to systematic changes in receptor cell size and stereociliary length. Furthermore, there is growing evidence that frequency specificity does not stop at mechanical and morphological elements in the cochlea, but also extends to the intrinsic electrical profile of the hair cell sensory receptors and the first neural element in the auditory system—the spiral ganglion neurons.
Subject
Neurology (clinical),General Neuroscience
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献