Brain Clocks: From the Suprachiasmatic Nuclei to a Cerebral Network

Author:

Mendoza Jorge1,Challet Etienne2

Affiliation:

1. Institute of Cellular and Integrative Neurosciences, Centre National dela Recherche Scientifique, University Louis Pasteur, Strasbourg, France

2. Institute of Cellular and Integrative Neurosciences, Centre National dela Recherche Scientifique, University Louis Pasteur, Strasbourg, France,

Abstract

Circadian timing affects almost all life’s processes. It not only dictates when we sleep, but also keeps every cell and tissue working under a tight temporal regimen. The daily variations of physiology and behavior are controlled by a highly complex system comprising of a master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus, extra-SCN cerebral clocks, and peripheral oscillators. Here are presented similarities and differences in the molecular mechanisms of the clock machinery between the primary SCN clock and extra-SCN brain clocks. Diversity of secondary clocks in the brain, their specific sensitivities to time-giving cues, as their differential coupling to the master SCN clock, may allow more plasticity in the ability of the circadian timing system to integrate a wide range of temporal information. Furthermore, it raises the possibility that pathophysiological alterations of internal timing that are deleterious for health may result from internal desynchronization within the network of cerebral clocks.

Publisher

SAGE Publications

Subject

Clinical Neurology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3