Book Review: Brain Function, Nonlinear Coupling, and Neuronal Transients

Author:

Friston Karl J.1

Affiliation:

1. The Wellcome Department of Cognitive Neurology, The National Hospital, Queen Square, UK,

Abstract

The brain can be regarded as an ensemble of connected dynamical systems and as such conforms to some simple principles relating the inputs and outputs of its constituent parts. The ensuing implications, for the way we think about, and measure, neuronal interactions, can be quite profound. These range from 1) implications for which aspects of neuronal activity are important to measure and how to characterize coupling among neuronal populations; 2) implication for understanding the emergence of dynamic receptive fields and functionally specialized brain architectures; and 3) teleological implications pertaining to the genesis of dynamic instability and complexity, which is necessary for adaptive self-organization. This review focuses on the first set of implications by looking at neuronal interactions, coupling, and implicit neuronal codes from a dynamical perspective. By considering the brain in this light, one can show that a sufficient description of neuronal activity must comprise activity at the current time and its recent history. This history constitutes a neuronal transient. Such transients represent an essential metric of neuronal interactions and, implicitly, a code employed in the functional integration of brain systems. The nature of transients, expressed conjointly in different neuronal populations, reflects the underlying coupling among brain systems. A complete description of this coupling, or effective connectivity, can be expressed in terms of generalized convolution kernels (Volterra kernels) that embody high-order or nonlinear interactions. This coupling may be synchronous, and possibly oscillatory, or asynchronous. A critical distinction between synchronous and asynchronous coupling is that the former is essentially linear and the latter is nonlinear. The nonlinear nature of asynchronous coupling enables the rich, context-sensitive interactions that characterize real brain dynamics, suggesting that it plays an important role in functional integration.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

Reference45 articles.

1. Cortical activity flips among quasi-stationary states.

2. Synchronization in neuronal transmission and its importance for information processing

3. Dynamics of functional coupling in the cerebral cortex: an attempt at a model-based interpretation

4. Bair W, Koch C, Newsome W, Britten K. 1994. Relating temporal properties of spike trains from area MT neurons to the behaviour of the monkey. In: Buzsaki G, Llinas R, Singer W, Berthoz A, Christen T, editors. Berlin: Springer Verlag. p 221-250.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3