Affiliation:
1. Laboratory of Cognitive Neurobiology, Hokkaido University
Graduate School of Medicine, Sapporo, Japan
2. Laboratory of Cognitive Neurobiology, Hokkaido University
Graduate School of Medicine, Sapporo, Japan,
Abstract
Cortical plasticity refers to flexible and long-lasting changes in neuronal circuitry and information processing, which is caused by learning and experience. Although cortical plasticity can be observed in every cortex of the brain, the plasticity of the prefrontal cortex (PFC) is particularly important because the PFC is involved in various cognitive functions, and its plasticity could lead to adaptive changes in the use of other brain regions. Cortical plasticity occurs at several levels, from functional molecules to the organization of large areas of the brain. Here, the authors focus mainly on the development and remodeling of the functional and structural organization of the primate PFC. They discuss how the columnar modules of the PFC develop in the immature brain, how these modules form a “cognitive field” that is responsible for a specific cognitive function, how the cognitive field could be reorganized by training in the mature brain, and how monoaminergic systems contribute to these various levels of plasticity. They suggest that monoaminergic systems, especially the dopaminergic system, are involved in various levels of cortical plasticity, such as behavioral learning and learning-dependent cortical remodeling, thereby contributing to the reorganization of the cognitive field in the primate PFC. NEUROSCIENTIST 13(3):229—240, 2007.
Subject
Clinical Neurology,General Neuroscience
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献