NMDA Receptors in Glia

Author:

Verkhratsky Alexei1,Kirchhoff Frank2

Affiliation:

1. Faculty of Life Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT UK

2. Max Planck Institute of Experimental Medicine, Goettingen, Germany

Abstract

The amino acid L-Glutamate acts as the most ubiquitous mediator of excitatory synaptic transmission in the central nervous system. Glutamatergic transmission is central for diverse brain functions, being particularly important for learning, memory, and cognition. In brain pathology, excessive release of glutamate triggers excitotoxic neural cell death through necrotic or apoptotic pathways. Glutamate effects are mediated by several classes of glutamate receptors, expressed in virtually all cells of neural origin. Specifically important for both physiological information processing and cell damage are glutamate receptors of NMDA ( N-methyl-D-aspartate) type, which, for a long time, were considered to be expressed exclusively in neurons. Recent studies have found functional NMDA receptors in brain macroglia, in astrocytes, and oligodendrocytes. Glial and neuronal NMDA receptors are functionally and structurally different; the glial receptors are weakly (if at all) sensitive to the extracellular magnesium block, which may indicate a predominant expression of the NR3 receptor subunit. In the cortex, astroglial NMDA receptors are activated upon physiological synaptic transmission. The physiological relevance of NMDA receptors in the white matter remains unknown; their activation upon ischemia triggers Ca2+-dependent damage of oligodendrocytes and myelin. The discovery of glial NMDA receptors further indicates the complex nature of intercellular signaling mechanisms in the brain, which involve all types of neural cells, connected through diverse types of chemical and electrical synapses.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

Cited by 220 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3