Noninvasive Brain Stimulation with Low-Intensity Electrical Currents: Putative Mechanisms of Action for Direct and Alternating Current Stimulation

Author:

Zaghi Soroush1,Acar Mariana1,Hultgren Brittney1,Boggio Paulo S.2,Fregni Felipe3

Affiliation:

1. Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts

2. Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil

3. Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,

Abstract

Transcranial stimulation with weak direct current (DC) has been valuable in exploring the effect of cortical modulation on various neural networks. Less attention has been given, however, to cranial stimulation with low-intensity alternating current (AC). Reviewing and discussing these methods simultaneously with special attention to what is known about their mechanisms of action may provide new insights for the field of noninvasive brain stimulation. Direct current appears to modulate spontaneous neuronal activity in a polarity-dependent fashion with site-specific effects that are perpetuated throughout the brain via networks of interneuronal circuits, inducing significant effects on high-order cortical processes implicated in decision making, language, memory, sensory perception, and pain. AC stimulation has also been associated with a significant behavioral and clinical impact, but the mechanism of AC stimulation has been underinvestigated in comparison with DC stimulation. Even so, preliminary studies show that although AC stimulation has only modest effects on cortical excitability, it has been shown to induce synchronous changes in brain activity as measured by EEG activity. Thus, cranial AC stimulation may render its effects not by polarizing brain tissue, but rather via rhythmic stimulation that synchronizes and enhances the efficacy of endogenous neurophysiologic activity. Alternatively, secondary nonspecific central and peripheral effects may explain the clinical outcomes of DC or AC stimulation. Here the authors review what is known about DC and AC stimulation, and they discuss features that remain to be investigated.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3