Affiliation:
1. Department of Physiology The Ohio State University Columbus,
Ohio
2. Department of Zoology and Genetics lowa State University
Ames, Iowa
Abstract
There is growing evidence that ions other than Ca2+ play important roles in the deterioration of neuronal elements in both gray and white matter after physical injury. This review features information gathered with a tissue culture model of dendrite transection regarding the contributions of Na+ and CI- to ultrastructural damage and neuronal death. This information and the results of other in vitro investigations of physical and ischemic/excitotoxic injuries indicate that elevation of internal Na+ is an early event that may contribute significantly to neuronal injury through effects on Na+-driven transport mechanisms. Proposed deleterious consequences include cytoplasmic acidification, reduced mitochondrial energy production, and elevation of intracellular Ca2+ and extracellular excitatory amino acids to toxic levels. Prevention of Na+ entry into neurons after injury has been found to limit ultrastructural damage, prevent death, and preserve electrophysiological function. Although the role of CI- in neuronal injury is less well defined, there is also evidence that elevation of intracellular CI- contributes to structural damage, particularly to the smooth endoplasmic reticulum. In terventions that limit Na+- and CI--mediated damage to injured neurons may have utility in neurosurgery and as acute phase treatments for nervous system trauma and other pathological states. NEURO SCIENTIST 3:89-101, 1997
Subject
Clinical Neurology,General Neuroscience
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献