REVIEW ■ : Physical Injury of Neurons: Important Roles for Sodium and Chloride Ions

Author:

Hill Lucas Jen1,Emery Dennis G.2,Rosenberg Lisa J.1

Affiliation:

1. Department of Physiology The Ohio State University Columbus, Ohio

2. Department of Zoology and Genetics lowa State University Ames, Iowa

Abstract

There is growing evidence that ions other than Ca2+ play important roles in the deterioration of neuronal elements in both gray and white matter after physical injury. This review features information gathered with a tissue culture model of dendrite transection regarding the contributions of Na+ and CI- to ultrastructural damage and neuronal death. This information and the results of other in vitro investigations of physical and ischemic/excitotoxic injuries indicate that elevation of internal Na+ is an early event that may contribute significantly to neuronal injury through effects on Na+-driven transport mechanisms. Proposed deleterious consequences include cytoplasmic acidification, reduced mitochondrial energy production, and elevation of intracellular Ca2+ and extracellular excitatory amino acids to toxic levels. Prevention of Na+ entry into neurons after injury has been found to limit ultrastructural damage, prevent death, and preserve electrophysiological function. Although the role of CI- in neuronal injury is less well defined, there is also evidence that elevation of intracellular CI- contributes to structural damage, particularly to the smooth endoplasmic reticulum. In terventions that limit Na+- and CI--mediated damage to injured neurons may have utility in neurosurgery and as acute phase treatments for nervous system trauma and other pathological states. NEURO SCIENTIST 3:89-101, 1997

Publisher

SAGE Publications

Subject

Clinical Neurology,General Neuroscience

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hodgkin–Huxley neurons with defective and blocked ion channels;International Journal of Modern Physics C;2015-06-24

2. Posttraumatic Epilepsy and Neurorehabilitation;Traumatic Brain Injury;2010-05-12

3. Sodium Signals and Their Significance for Axonal Function;New Aspects of Axonal Structure and Function;2010

4. Post-Traumatic Neural Depression and Neurobehavioral Recovery after Brain Injury;Journal of Neurotrauma;2006-08

5. Traumatic Central Nervous System Injury;eLS;2003-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3