Cost and weight of composite ship structures: A parametric study based on Det Norske Veritas rules

Author:

Håkansson Måns1,Johnson Erland2,Ringsberg Jonas W3

Affiliation:

1. Department of Surface Ships Technologies, Saab Kockums AB, Karlskrona, Sweden

2. Department of Safety-Mechanics Research, SP Technical Research Institute of Sweden, Borås, Sweden

3. Division of Marine Technology, Department of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg, Sweden

Abstract

A wider use of composites in larger, commercial vessels has been limited by initial costs and fire regulations, but both of these obstacles are diminishing. Increasing fuel costs and more stringent emission requirements have heightened the value of lightweight structures. Due to the higher acquisition costs and other entry barriers, composite designs must be as cost efficient as possible in order to compete with traditional steel or aluminium designs. The purpose of this article is to investigate which fibre-reinforced polymer materials and types of structures are most suitable for different parts of a ship design in order to minimize weight or cost. This is done by designing and comparing individual composite panels while varying a wide range of input parameters and strictly following the ‘Det Norske Veritas (DNV) Rules for Classification of High Speed, Light Craft and Naval Surface Craft’. The results are presented as weight and cost comparisons between materials and structures and also degree of utilization for the different design criteria; carbon fibre structures are on the average 20%–30% lighter than glass fibre structures but are consistently more expensive. The results also indicate that sandwich panels in most cases are lighter than single-skin panels, and that for sandwich structures, the mechanical properties of the core material are commonly the critical design criterion. The minimum amount of reinforcement stipulated by the rules is also found to be a critical factor.

Funder

Chalmers Area of Advances Materials Science and Transport

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3