Performance analysis of a horizontal axis current turbine blade section with inserted tube

Author:

Kundu Parikshit1ORCID,De Ashoke12

Affiliation:

1. Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

2. Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

Abstract

Generating more usable power annually from the river and tidal currents is essential to improving cost-effectiveness. Among various alternative options, the performance improvement of the blade foil has been considered in this work. When the fluid over the blade surface loses kinetic energy, flow separation occurs. The lift forces are reduced by flow separation, which finally results in less power production by the horizontal axis current turbine. To extract more power, it is necessary to overcome this flow separation. This paper presents a passive flow control method using tubes at regular intervals on the blade section to improve its performance considering its application on a horizontal axis current turbine. The tube inlet and outlet positions are determined by analyzing the force coefficients, glide ratio, and stall angle for a specific angle of attack. Finally, the performance characteristics are compared between the baseline and the modified hydrofoil. The maximum lift coefficient of the hydrofoil is increased by 15.7%. Also, the maximum glide ratios are considerably increased beyond the stall of the baseline profile. From the numerical results, it can be concluded that tubes inserted at regular intervals on the hydrofoil significantly increase its performance at a higher angle of attack.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Reference58 articles.

1. National statistical office, Ministry of statistics and programme implementation, Government of India. Energy Statistics2020, http://www.mospi.gov.in/sites/default/files/publication_reports/ES_2020_240420m.pdf(2020, accessed 17 June 2022).

2. Actuators for Active Flow Control

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3