Ultrasonic non-destructive inspection method for glass fibre reinforcement polymer (GFRP) hull plates considering design and construction characteristics

Author:

Han Zhiqiang1,Liu Yang2,Wu Xiaohong3,Oh Daekyun4ORCID,Jang Jaewon5ORCID

Affiliation:

1. School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China

2. School of Navigation and Shipping, Shandong Jiaotong University, Weihai, China

3. Chongqing Vessel Survey Center, Chongqing, China

4. Department of Naval Architecture and Ocean Engineering, Mokpo National Maritime University, Mokpo, Jeollanam-do, Republic of Korea

5. Department of Ocean System Engineering, Graduate School, Mokpo National Maritime University, Mokpo, Jeollanam-do, Republic of Korea

Abstract

The design and construction characteristics, including glass fibre weight fraction ( Gc), number of single-ply layers, fabric combination, and fabrication quality, of glass fibre reinforcement polymer (GFRP) hull plates affect ultrasound propagation characteristics, such as ultrasonic velocity and attenuation, thereby influencing the accuracy of ultrasonic non-destructive test results. Therefore, this study is to propose a method to decrease the ultrasonic test errors of GFRP hull plate by using statistical method. The GFRP specimens with Gc of approximately 30–50 wt%, thicknesses of approximately 5–20 mm, and different fabric combinations were prepared using the hand lay-up method, considering the general design–construction characteristics. Further, an ultrasonic velocity decision method for ultrasonic inspection was proposed considering the GFRP hull design-construction characteristics, such as Gc and number of single-ply layers of hull plate by multiple linear regression method. The results show that the proposed method can reduce the thickness measurement error from approximately 20%–30% to 1%–2%, compared to an existing ultrasonic inspection method, only considering the Gc effect on ultrasonic velocity, which indicates that the proposed test method is suitable for practical applications.

Funder

the Talent Introduction Research Fund of the Zhejiang Ocean University

Publisher

SAGE Publications

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3