Effects of motion and structural vibration–induced loadings on the coupled dynamic response of a mono-column tension-leg-platform floating wind turbine

Author:

Imani Hasan1,Abbaspour Madjid1,Tabeshpour Mohammad Reza1,Karimirad Madjid23

Affiliation:

1. Center of Excellence in Hydrodynamics and Dynamics of Marine Vehicles, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

2. Civil Engineering, School of Natural and Built Environment, Queen’s University Belfast, Belfast, UK

3. Institution of Mechanical Engineers, IMechE, London, United Kingdom

Abstract

Floating wind turbines are subjected to highly dynamic and complicated environmental conditions leading to significant platform motions and structural vibrations during operation and survival conditions. These motions and vibrations alter the induced loading characteristics; and consequently, affect the dynamic behavior of the system. In order to better understand the influence of such motions and structural vibrations, herein elastic structural disturbance of tower, on the system behavior, the spectral and statistical characteristics of a floating wind turbine dynamic responses under operational and survival conditions are fully explored using a fully coupled aero-hydro-servo-multi-rigid-flexible-body model. The spectral comparison results showed the important role of aerodynamic damping in reducing the high-frequency resonant responses in operational conditions. These analyses also revealed the effects of tower elasticity in shifting and amplifying high-frequency resonant responses. The statistical comparison results showed that the mean values of the responses are dominated by wind loads and the maximum and standard deviations of the responses are mainly induced by the combination of support platform motions and wave loads. It was also shown that elastic structural deformation of tower enlarges the statistical characteristics of the responses, especially when the system is subjected to both wind and wave loadings.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3