Kinematics and force analysis of a novel offshore crane combined compensation system

Author:

Wang Shenghai1,Sun Yuqing1,Chen Haiquan1,Han Guangdong1

Affiliation:

1. Department of Marine Engineering, Dalian Maritime University, Dalian, China

Abstract

Offshore cranes are widely used in offshore industry. However, because of the wave motion of the ship and the flexibility of the rope, the sway of payload is unavoidable and may put relevant operations in danger. Thus, compensation system is an essential part of offshore crane to ensure human safety and increase operation efficiency. In this article, a novel offshore crane combined compensation approach named four-post combined compensation is proposed based on the three-post direct ship motion compensation, aiming to overcome its shortcomings. The structure and principle of four-post combined compensation is introduced. The mathematical models of four-post combined compensation and three-post direct ship motion compensation are established uniformly and based on which we carry out numerical simulations and comparative analysis of three-post and four-post schemes. Numerical simulation results are included to demonstrate that comparing to three-post scheme, four-post scheme has the following advantages: first, the maximum actuator force requirement can be reduced significantly; second, the work load is distributed more evenly among cylinders; third, the main support shaft can prevent the platform from tipping over; the actuators always push the platform and do not have to be bi-directional, which might result in lower cost and risk.

Funder

China Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A time optimal trajectory planning method for offshore cranes with ship roll motions;Journal of the Franklin Institute;2022-08

2. Dynamic Modeling and Analysis of the Telescopic Sleeve Antiswing Device for Shipboard Cranes;Mathematical Problems in Engineering;2021-02-18

3. Nonlinear differential and integral sliding mode control for wave compensation system of ship-borne manipulator;Measurement and Control;2020-08-04

4. Payload swing suppression for offshore cranes using a novel triple-tagline system: Theory and experiment;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2019-09-18

5. Lifting Wind Turbine Components From a Floating Vessel: A Review on Current Solutions and Open Problems;Journal of Offshore Mechanics and Arctic Engineering;2019-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3