Comparative Life Cycle Assessment of the hull of a high-speed craft

Author:

Burman Magnus1,Kuttenkeuler Jakob1,Stenius Ivan1,Garme Karl1,Rosén Anders1

Affiliation:

1. KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

A comparative Life Cycle Assessment is performed for different structural material concepts on a 24-m-long high-speed patrol craft. The study is comparative and determines the differences in and sensitivities to environmental impact, especially in relation to the total impact of fuel burn for the different material concepts. The material concepts are aluminium and various composite combinations consisting of glass fibre and carbon fibre with vinyl ester resin both as single skins and as sandwich with a Divinycell foam core. Commercially available standard Life Cycle Assessment software is used for the Life Cycle Assessment calculations. The study shows that regardless of hull material concept, the environmental impact is dominated by the operational phase due to relatively large fuel consumption. In the operational phase, the lightest carbon-fibre concept is shown to have least environmental impact. Considering the manufacturing phase exclusively for the different hull concepts, it is concluded that the manufacturing of the aluminium hull has a somewhat larger environment impact for the majority of Life Cycle Assessment impact categories in comparison to the different composite hulls. The significant impact on the marine and the fresh water aquatic ecotoxicity originates from the aluminium raw material excavation and manufacturing processes. It is shown that the lightest hull, the carbon-fibre sandwich concept, with a 50% structural weight reduction compared to the aluminium design, can be utilized to reduce the fuel consumption by 20% (775 ton of diesel) over the lifetime with significant impact on the dominating environmental aspects considered herein, abiotic depletion, global warming and acidification.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3