Relative velocity control and integral line of sight for path following of autonomous surface vessels: Merging intuition with theory

Author:

Caharija Walter1,Pettersen Kristin Y1,Sørensen Asgeir J2,Candeloro Mauro2,Gravdahl Jan T1

Affiliation:

1. Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway

2. Department of Marine Technology, Norwegian University of Science and Technology, Trondheim, Norway

Abstract

The integral line-of-sight guidance law for path following applications of autonomous surface vessels is presented in a unified manner, merging intuitive and theoretical aspects of this valuable control technique. Straight line path following scenarios of underactuated surface vessels in the presence of unknown constant irrotational ocean currents are considered. The integral line-of-sight guidance and two feedback controllers are combined into a cascaded configuration where the integral effect in the line-of-sight guidance is introduced to counteract the disturbance. The chosen integration law is defined to reduce the risk of wind-up effects, and it is shown that the integral action in the line-of-sight guidance law performs a vectorial sum between the vessel relative velocity and the unknown current velocity to compensate for the drift. Moreover, only relative velocities are used in the feedback loop since the ocean current is assumed constant and irrotational. Redefining the vessel model with relative velocities significantly simplifies the control system compared to the approach based on absolute velocities. Closed-loop uniform local exponential stability is achieved for path following of straight line paths. Furthermore, in steady state, the presented guidance law paired with measurements of the absolute speed and the relative speed of the vessel yields to an estimation of the ocean current. Simulations are presented to support the theoretical results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3