Smart carrot chasing guidance law for path following of unmanned surface vehicles

Author:

Ünal Osman1ORCID,Akkaş Nuri1,Atalı Gökhan2,Özkan Sinan Serdar2

Affiliation:

1. Department of Mechanical Engineering, Sakarya University of Applied Sciences, Sakarya, Turkey

2. Department of Mechatronic Engineering, Sakarya University of Applied Sciences, Sakarya, Turkey

Abstract

Carrot chasing guidance law is one of the most widely used path following algorithms due to its simplicity and ease of implementation; however, it has a fixed parameter which leads to large cross-tracking errors during different navigational conditions. This study proposes an innovative approach to carrot chasing algorithm to minimize cross-tracking errors. Pattern search optimization technique is integrated with carrot chasing guidance law to determine unique virtual target points obtained by flexible parameters instead of a fixed parameter. Proposed smart carrot chasing guidance law (SCCGL) provides stable and accurate path following even for different navigational conditions of unmanned surface vehicle (USV). To the best of our knowledge, we are the first to apply pattern search optimization technique to carrot chasing guidance law while USV is performing multi-tasks of predefined paths. This novelty significantly reduces both cross tracking errors and computational costs. Firstly, SCCGL is tested and compared with traditional carrot chasing algorithm in the numerical simulator for several navigational conditions such as different lists of waypoints, different initial locations, and different maximum turning rates of USV. SCCGL automatically determines optimal parameters to make stable and accurate navigation. SCCGL significantly reduces cross tracking errors compared to classical carrot chasing algorithm. This is the first contribution of this paper. Secondly, genetic algorithm optimization method has been implemented to carrot chasing guidance law instead of pattern search optimization technique. Genetic algorithm causes the total simulation time to be quite long. The proposed SCCGL (pattern search integrated carrot chasing guidance law) gives optimum results 20 times faster than the genetic algorithm. This is the second and main contribution of developed SCCGL method. It is observed that SCCGL provides best navigation with minimum cross-tracking errors and minimum computational cost compared to the classical carrot chasing algorithm and other optimization technique.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3