A benchmark study on the energy efficiency and environmental impacts of alternative fuels in gulet-type sailing yachts

Author:

Akman Mehmet1ORCID

Affiliation:

1. Department of Motor Vehicles and Transportation Technologies, Muğla Sıtkı Koçman University, Muğla, Turkey

Abstract

Gulet-type yachts are one of the symbols of maritime culture with their unique hull forms and schooner or ketch-type riggings. In parallel with the targets aiming for decarbonization in the maritime industry, energy efficiency and emission control are on the agenda for these types of yachts. Driven by this motivation, a novel benchmark study for the gulet-type yachts is conducted to evaluate the energy efficiency and environmental impacts associated with the adoption of LNG or methanol as primary fuel alternatives to MDO. The benchmark study is constructed in two steps: Presenting the design and propulsion characteristics of existing gulets, followed by a detailed analysis of the energy efficiency and environmental impacts of using alternative fuels. Therefore, 57 gulets with round and transom sterns whose hull forms are analyzed, modeled and general characteristics are presented. After modeling, the resistance and effective power of hull forms are predicted using the Holtrop-Mennen method and CFD. The flow characteristics around the hulls are obtained and the results are validated using the previous experimental studies in the first step. Then, installed and computed engine capacities are compared, and the Annual Emission Ratio and Energy Efficiency Index (EEI) are calculated for environmental impact assessments. Finally, the applicability of using LNG or MeOH-fueled propulsion systems for gulet-type yachts is discussed considering energy efficiency and design. According to the results, transitioning to alternative fuels can increase the Energy Efficiency Index of gulet-type yachts by over 20%.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

SAGE Publications

Reference46 articles.

1. Tupper EC (ed.). Introduction to naval architecture. 5th ed. Oxford: Butterworth-Heinemann; 2013.

2. Guideline for Preliminary Design Phase of Trawler Type Yachts

3. IMO. Fourth IMO GHG Study 2020 Executive-Summary, 2020.

4. IMO. Resolution MEPC.377(80) - 2023 IMO Strategy on Reduction of GHG Emissions from Ships. MEPC 80/17/Add.1, 2023.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3