LAW-IFF Net: A semantic segmentation method for recognition of marine current turbine blade attachments under blurry edges

Author:

Qi Fei1ORCID,Wang Tianzhen12ORCID,Wang Xiaohang2,Chen Lisu3

Affiliation:

1. Logistics Engineering College, Shanghai Maritime University, Shanghai, China

2. Harbin Electric Machinery Co Ltd, Harbin Large Electric Motor Research Institute, Harbin, Heilongjiang, China

3. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China

Abstract

Challenges exist in the power generation efficiency and safety of marine current turbines (MCTs), as the MCT blades are often attached by foreign objects when operating underwater. It is essential for the stable operation of an MCT to recognize attachments timely and accurately. However, underwater imaging suffers from blurry edges due to light attenuation and scattering. It is challenging for accurate recognition through underwater images since blurry edges result in unclear edge features. To alleviate this problem, LAW-IFF Net is proposed in this paper, which mainly contains two parts. Firstly, this paper proposes to transform the local averages of feature maps into weight matrices, namely the locally average weighting (LAW) mechanism. It is intended to alleviate the edge gradient reduction caused by blurry edges. Secondly, the proposed improved feature fusion (IFF) mechanism aims to overcome the deviation caused by the feature fusion of different attention branches based on spatial attention. At the same time, the lightweight networks are combined with the proposed method to improve the computation speed and ensure the timeliness of recognition. Experimental results on the MCT dataset show the superiority of the proposed method in terms of accuracy and speed of attachment recognition in images with blurry edges. The experimental results on publicly available datasets show the applicability of the proposed method to other underwater images.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3