Analysis of fatigue behaviour of drill pipe on pin-box connection

Author:

Ozguc Ozgur1ORCID

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Istanbul Technical University, Istanbul, Turkey

Abstract

Drilling is one of the costliest and risky activities in oil and gas industry due to complexity of interactions with downhole formation. Cyclic loads while drilling cause the initiation and growth of cracks in oil tubulars. This phenomenon, known as fatigue, results in permanent reduction of the failure-free service envelope of a certain tubular. Further, most of the drill string failures are triggered by fatigue, which results from repetitive cyclic bending loads and stresses in tensile or buckled drill strings. Fatigue is a cumulative and non-reversible condition induced by repetitive cyclic bending loads and tensile or buckled drill pipe stresses. Fatigue exists even though cyclic tension of the drill pipe material is much lower than static strength limit. Present work investigates fatigue capacity of the 4” WT38 drill pipe connection where cracks have been observed. In accordance with the geometry of connection, a hot spot stress from bending moment is calculated in the crack location in the first thread (upper) of the pin. The DNVGL-RP-C203 SN-curve B1 “in air” is used as relevant fatigue SN curve for the drill pipe thread location. Finite element method (FEM) is employed in modeling and analyzing of drill pipe on pin-box connections. With this method, various connections can be investigated relatively faster and cheaper compared with experimental tests. It is found that the fatigue failure may have been caused as a result of the cyclic load level and number of load cycles. A detailed discussion of the fatigue damage assessment concludes the paper.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3