Effect of biomimetic fish scale structure on the drag reduction performance of Clark-Y hydrofoil

Author:

Yan Hao1,Xie Tengzhou1ORCID,Wang Fei1,Zeng Yishan1,Ai Jiaqiu2

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui, China

2. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, Anhui, China

Abstract

A hydrofoil is a basic shape of fluid machinery blades, and its drag reduction performance is an important reference index in the field of fluid transportation. When fluid flows around a hydrofoil, it generates friction drag and pressure drag, greatly reducing the hydrofoil’s hydraulic performance. This study designs a bionic drag reduction structure by arranging fish scales on a Clark-Y hydrofoil. The overlapping size, thickness, and coverage area of fish scales are taken as design parameters, and the optimal design scheme is attained by using the Taguchi method. Large eddy simulation is used to numerically simulate various schemes. Results show that when the overlapping size O is 2.00 mm, the thickness h is 0.36 mm, the initial position x/C of the fish scale covering is 0 (where C is the chord length of the hydrofoil), and the hydrofoil exhibits excellent drag reduction performance. The total drag reduction rate of the hydrofoil is up to 35.15%, and the drag reduction rate of friction drag and pressure drag is up to 39.56% and 25.64%, respectively. The lift–drag ratio of the hydrofoil increases by 18.04%. The bionic fish scale structure effectively inhibits turbulence, thereby reducing the drag caused by the transformation of laminar flow to turbulence.

Funder

the University Synergy Innovation Program of Anhui Province under Grant

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3