Application of photogrammetry for spatial free surface elevation and velocity measurement in wave flumes

Author:

Fleming Alan1ORCID,Winship Brian1,Macfarlane Gregor1

Affiliation:

1. National Centre for Maritime Engineering & Hydrodynamics (NCMEH), Australian Maritime College, University of Tasmania, Launceston, TAS, Australia

Abstract

This article presents a method for obtaining the spatial free surface elevation and velocity field for the water surface in a wave flume over a relatively large measurement area for this type of application (approximately 1.5 m × 1.5 m). The technique employs proprietary videogrammetry software to post-process stereo images captured by multiple synchronised machine vision cameras. Dimensional resolution and other limitations are similar to that experienced for particle imaging velocimetry systems ( x, y resolution of 2 mm). Imaging of the free surface was enabled by the use of millions of bespoke slightly positively buoyant fluorescent flakes. Ultraviolet light was used as the primary light source to excite the fluorescent flakes. Reflected ultraviolet light was attenuated by a high-pass filter fitted to the cameras so that only the emitted light from the fluorescent flakes was visible. The software was validated using a simple linear translation experiment. An application is demonstrated for the radiated wave field generated from a submerged sinusoidal heaving sphere for two cases: one single and five consecutive oscillations. Results agree with linear wave theory which indicates that the floating flakes had minimal impact on the water surface particle motion at the scale tested. It is, therefore, concluded that spatial measurement of the free surface elevation and velocity using the method presented has good resolution over a large measurement field. The flakes were found to follow the free surface well, but the measurement area is constrained to where the pattern of flakes exists in the image. Hence, application of floating markers is not suitable for experiments with significant outflow/upwelling which would wash away the floating markers from the intended measurement area.

Funder

Australian Renewable Energy Agency

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3