A discrete-forcing immersed boundary method for turbulent-flow simulations

Author:

Ye Haixuan1,Chen Yang1,Maki Kevin1ORCID

Affiliation:

1. Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract

For numerical simulations of ship hydrodynamics in high Reynolds number, near-wall grids with high quality are essential to accurately predict the flow field and shear stress. This article proposes a discrete-forcing immersed boundary method to simulate moving solid boundaries in turbulent flows. The technique will efficiently remove the requirement of high-quality body-conforming grids and also preserve the grid quality throughout the simulation when body motions are considered. The one-equation Spalart–Allmaras turbulence model is coupled with the immersed boundary method for turbulence closure. A key aspect of this method is to use a wall function to alleviate the near-wall cell-size requirement in high-Reynolds-number flows. In this method, the boundary conditions on the immersed surfaces are enforced without the need of spreading functions, which is favorable for high-Reynolds-number flows. The performance of the method is carefully verified and validated through various problems, including both laminar and turbulent flows for fixed and moving solid surfaces. Subsequently, this method is further examined by predicting the turbulent flows around a model-scaled double-body KVLCC2 tanker. The total resistance and the local wake field are compared with experimental data.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3