Computational fluid dynamics prediction of hydrodynamic forces on a manoeuvring ship including effects of dynamic sinkage and trim

Author:

Liu Yi1,Zou Lu12,Zou Zao-Jian12

Affiliation:

1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China

2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, China

Abstract

Understanding the manoeuvring performance of a ship requires accurate predictions of the hydrodynamic forces and moments on the ship. In the present study, the hydrodynamic forces and moments on a manoeuvring container ship at various rudder and drift angles are numerically predicted by solving the unsteady Reynolds-averaged Navier–Stokes equations. The effects of dynamic sinkage and trim on the hydrodynamic forces are first investigated together with a grid dependency study to estimate the numerical error and uncertainty caused by grid discretization, and with a validation study combining the experimental data. The results show that the effect of dynamic sinkage and trim is non-negligible, since including it improves the hydrodynamic force predictions and reduces the numerical error and uncertainty, and the averaged error and uncertainty are smaller than the other computational fluid dynamics results where sinkage and trim were fixed with given values from model tests. Therefore, it is included in the subsequent systematic simulations regarding the influence of rudder and drift angles. The computed forces, moments and rudder coefficients at different rudder and drift angles on the container ship are compared with the benchmark model test data. From the computations, all the predicted quantities are in satisfactory agreement with the experimental data. The details of the flow filed and hydrodynamic forces, such as pressure distributions, transverse force distributions along the hull, velocity contours, streamlines and wave patterns are presented and discussed, and a deep insight into the physical mechanism in the hydrodynamic forces on a manoeuvring ship is obtained.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3