Parameter sensitivity of the excessive acceleration failure mode in second-generation intact stability

Author:

Yang Kyung-Kyu1ORCID

Affiliation:

1. Department of Autonomous Vehicle System Engineering, Chungnam National University, Daejeon, Republic of Korea

Abstract

In this study, the parameter sensitivity of the level 1 and 2 assessments of the excessive acceleration failure mode in the International Maritime Organization second-generation intact stability was analyzed. Monte-Carlo simulations were conducted using the input parameter space, which was generated using a Gaussian distribution, and a variance-based sensitivity analysis was performed using the Monte-Carlo simulation results. The longitudinal and vertical positions of the check point, natural roll period, and roll decay coefficient were selected as input parameters for the level 1 assessment, whereas the roll damping coefficient and effective wave slope coefficient replaced the roll decay coefficient for the level 2 assessment. The results revealed that the highest total sensitivity index for the level 1 assessment was the natural roll period, which was 0.8, and the effective wave slope had a total sensitivity index of 0.5 for the level 2 assessment. This indicated that the uncertainty of the natural roll period was dominantly propagated to the resultant value of the level 1 assessment, while the effective wave slope coefficient was the most sensitive parameter in the level 2 assessment. The uncertainty in the input variable was found to cause the opposite decision if the resultant value was close to the criterion value under a given loading condition.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Reference29 articles.

1. IMO. International code of intact stability. London: IMO, 2008.

2. IMO. Interim guidelines on the second generation intact stability criteria. London: IMO, 2020.

3. IMO. Development of explanatory notes to the interim guidelines on second generation intact stability criteria. London: IMO, 2021.

4. Belenky V, Bassler CC, Spyrou K. Development of second generation intact stability criteria. Hydromechanics Department Report, Naval Surface Warfare Center, USA, December 2011.

5. A simplified modular approach for the prediction of the roll motion due to the combined action of wind and waves

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Guest editorial for the special issue on “marine hydrodynamics for innovative design”;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3