On the use of Fourier Features-Physics Informed Neural Networks (FF-PINN) for forward and inverse fluid mechanics problems

Author:

Sallam Omar1ORCID,Fürth Mirjam1ORCID

Affiliation:

1. Ocean Engineering Department, Texas A&M University, College Station, TX, USA

Abstract

Physics Informed Neural Networks (PINN), a deep learning tool, has recently become an effective method for solving inverse Partial Differential Equations (PDEs) where the boundary/initial conditions are not well defined and only noisy sparse measurements sampled in the domain exist. PINN, and other Neural Networks, tends to converge to the low frequency solution in a field that has multiple frequency scales, this is known as spectral bias. For PINN this happens when solving PDEs that exhibit periodic behavior spatially and temporally with multi frequency scales. Previous studies suggested that Fourier Features-Neural Networks (FF-NN) can be used to overcome the spectral bias problem. They proposed the Multi Scale-Spatio Temporal-Fourier Features-Physics Informed Neural Networks (MS-ST-FF-PINN) to overcome the spectral bias problem in PDEs solved by PINN. This has been evaluated on basic PDEs such as Poisson, wave and Gray-Scott equations. In this paper we take MS-ST-FF-PINN a step further by applying it to the incompressible Navier-Stokes equations. Furthermore, a comparative analysis between the PINN and the MS-ST-FF-PINN architectures solution accuracy, the learnt frequency components and the rate of convergence to the correct solution is included. To show this three test cases are shown (a)-Forward time independent double-lid-driven cavity, (b)-Inverse time independent free surface estimation of Kelvin wave pattern, and (c)-Inverse 2D time-dependent turbulent Von Karman vortex shedding interaction downstream of multiple cylinders. The results show that MS-ST-FF-PINN is better at learning low and high frequency components synchronously at early training iterations compared to the PINN architecture that does not learn the high frequency components even after multiple iteration numbers such as the Kelvin wave pattern and the Karman vortex shedding cases. However, for the third test case, the MS-ST-FF-PINN architecture showed a discontinuity for the temporal prediction of the pressure field due to over-fitting.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fourier warm start for physics-informed neural networks;Engineering Applications of Artificial Intelligence;2024-06

2. Guest editorial for the special issue on “marine hydrodynamics for innovative design”;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2023-10-21

3. Combination of Physics-Informed Neural Networks and Single-Relaxation-Time Lattice Boltzmann Method for Solving Inverse Problems in Fluid Mechanics;Mathematics;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3