The development of a model for determining scheduled replacement intervals for marine machinery systems

Author:

Emovon Ikuobase12,Norman Rosemary A1,Murphy Alan J1

Affiliation:

1. School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, UK

2. Department of Mechanical Engineering, Federal University of Petroleum Resources Effurun, Nigeria

Abstract

One of the challenges of maintenance management of a marine machinery system is the problem of selecting the optimum interval for replacement of equipment items. Most of the approaches that are given in the literature for selecting optimum replacement intervals are based on a single criterion model such as cost. This approach may be satisfactory for some industries but for the marine industry disruption in services will result in a considerable cost penalty and, as such, other factors such as system downtime and system reliability must be taken into consideration when determining the optimum replacement interval for the system. These decision criteria have been proven to be in conflict with one another. On this basis, a multi-criteria decision-making tool, Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), is proposed in this article for aggregating multiple criteria in order for them to be used simultaneously in determining the optimum scheduled replacement interval for the equipment items of the system. The use of a multi-criteria decision-making tool allows the decision-maker to express preference for the decision criteria in terms of their levels of importance. To achieve this aim, a compromise decision weighting technique is integrated with TOPSIS. The compromise weighting technique was obtained from a combination of the variance method (an objective decision criteria weighting technique) and analytical hierarchy process (a subjective decision criteria weighting technique). In order to demonstrate the applicability of the proposed innovative methodology for determining the optimum replacement intervals for a marine machinery system and also validate the technique, a case study involving some equipment items of a marine diesel engine is presented. Although results show that it produces the same optimum solution as the methods in the literature, the proposed method is more flexible and less computationally intensive.

Funder

TETFUND NIGERIA

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3