Experimental study on axial load transfer behavior of a coiled tubing stuck in a marine riser

Author:

Chen Yingchun1,Zhang Shimin1,Wang Wenming1,Xiong Minghao1

Affiliation:

1. College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing, China

Abstract

After years of using, the marine riser would need pigging operation to remove wax and other debris attached to its interior to recover production. Due to its low stiffness, coiled tubing would buckle when performing the marine riser pigging operation, which would make the injecting force not able to completely transfer into its end and finally damage coiled tubing and riser. Thus, in order to ensure the safety and reliability of the operation, this article reports an experimental study on this topic by building an indoor pipe-in-pipe platform. According to the experimental results, the inner pipe’s axial force transfer efficiency is always less than 1. When injecting force is less than the inner pipe’s critical helical buckling load, the inner pipe’s axial load transfer efficiency is basically the same under “unfixed boundary” and “fixed boundary” at the same force-out. When injecting force is bigger than the inner pipe’s critical helical buckling load, “unfixed boundary” would help decrease the inner pipe’s axial load transfer efficiency; when the injecting force is three times the critical helical buckling load, the inner pipe’s axial load transfer efficiency of “unfixed boundary” can be 3% smaller than that of “fixed boundary.” As the outer pipe of “unfixed boundary” would elongate, its axial load transfer would be “delay” compared with “fixed boundary,” which means injected displacement of “unfixed boundary” inner pipe would be bigger than those of “fixed boundary” at the same force-out. The research done above might provide important theoretical supports for the marine riser pigging operation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Reference31 articles.

1. O’Donoghue AF. On the steady state motion of conventional pipeline pigs using incompressible drive media. PhD Dissertation, Cranfield University, Cranfield, 1996.

2. Transient Pig Motion Through Gas and Liquid Pipelines

3. Resistive Force of Wax Deposits During Pigging Operations

4. Jonathan S. Wax removal using pipeline pigs. PhD Dissertation, Durham University, Durham, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3