Optimization of multiple autonomous underwater vehicle cooperative system communication network topology based on total energy consumption

Author:

Liang Qingwei1ORCID,Ou Junlin1,Shi Liang1,Zhang Xin1

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, P.R. China

Abstract

Given the importance of the communication energy consumption of multiple autonomous underwater vehicle cooperative systems in practical work, this work optimizes the network topology to reduce total energy consumption. In accordance with the characteristics of underwater communication, the energy consumption of communication links is obtained, thereby obtaining the total communication energy consumption of multiple autonomous underwater vehicle cooperative systems. Taking the all-terminal reliability of the communication network as a constraint and the total energy consumption of network communication as the optimization goal, this work puts forward an optimization model for the communication network topology of multiple autonomous underwater vehicle cooperative systems. Furthermore, this work creatively describes the network topology optimization problem as a special path optimization problem suitable for the ant colony optimization algorithm presented to solve the optimization problem and shown to be effective and efficiency on this problem.

Funder

Basic Science Research Project of Shaanxi Province

China Scholarship Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3