Water level forecasting using a hybrid algorithm of artificial neural networks and local Kalman filtering

Author:

Zhong Cheng1,Jiang Zhonglian1,Chu Xiumin1,Guo Tao2,Wen Quan2

Affiliation:

1. National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan, China

2. Changjiang Waterway Planning Design and Research Institute, Wuhan, China

Abstract

The dynamic processes in the tidal reaches of the Yangtze River lead to the complexity of short-term water level forecasting. Historical data of daily water level are obtained for the lower reaches (Anqing–Wuhu–Nanjing) of the Yangtze River. Stationary time series of water level is derived by making the first-order difference with the raw datasets. An artificial neural network–Kalman hybrid model is proposed for water level forecasting, in which the Kalman filtering is introduced for partial data reconstruction. The model is calibrated with the hydrologic daily water level data of years 2014–2016 for MaAnshan station. Comparing with the traditional artificial neural network model, daily water level predictions are improved by the hybrid algorithm. Discrepancies appear under the circumstance of sharp variations of water level observations. Moreover, the implementation strategy of Kalman filtering algorithm is explored, which indicates the superiority of local Kalman filtering.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3