Exergy efficiency and EEXI analysis of a marine power plant at partial load conditions

Author:

Kocak Gazi1ORCID,Durmusoglu Yalcin1

Affiliation:

1. Department of Marine Engineering, Istanbul Technical University, Tuzla, Istanbul, Turkey

Abstract

Energy efficiency and environmental protection are becoming more important in the world. Almost 90% of the world trade is carried by sea which makes energy efficiency very important for the maritime sector. Exergetic method is a powerful scientific tool for measuring energy efficiency. The ships are not always cruising at maximum load conditions. The situations such as narrow water passages, maneuvering, and, hoteling etc. are partial load conditions and the exergy loss in power systems reaches maximum values at these conditions. Besides the new IMO regulation forces the sector to reduce emissions through Energy Efficiency Existing Ship Index (EEXI) and one of the most popular solutions is Engine Power Limitation (EPL). In the literature there are limited studies investigating exergy efficiencies of partial load conditions of a marine power plant. In this article, the performance analyses of a combined power system in partial load conditions are carried out using exergy method. The considered partial load conditions are maximum-ahead, full-ahead, half-ahead, slow-ahead and dead-slow-ahead loads of the engine. The results show that, the exergy efficiency of the overall system is decreasing at lower load conditions. It is observed that the maximum exergy efficiency is 51.6% which is reached at 96 rpm. The best condition considering both exergy efficiency and EEXI is 80 rpm of main engine. At slow-ahead and dead-slow-ahead conditions the exergy efficiency decreases to about 33%.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3