A mathematical study of water wave interaction with a thin perforated barrier in a two-layer fluid over a permeable bottom

Author:

Barman Koushik Kanti12ORCID,Bora Swaroop Nandan1

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, Assam, India

2. Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung

Abstract

This article studies the impact of a submerged interface-piercing perforated barrier in a two-layer fluid flowing over a permeable bottom. We investigate oblique wave scattering, trapping and radiation due to the structure focusing on the bottom permeability. The dead water phenomenon is analysed with the consideration of the bottom permeability, which results in a higher variation of the interfacial wave due to the bottom permeability. The matched eigenfunction expansion method and the least square technique are used to calculate various hydrodynamic coefficients. Wave energy identity relation is derived for the scattering scenario, and the associated energy loss due to the barrier is calculated. In order to attain the maximum wave dissipation, an ideal porous-effect parameter of the barrier is proposed for consideration, and it is observed that larger values of porous-effect parameter result in the lowest feasible pressure distribution. A good comparison with a prior result justifies the current semi-analytical procedure. Furthermore, the verification of the energy-identity terms aid in the validation of the computed results. Additionally, wave trapping in a confined region is examined by investigating reflection coefficients by considering a rigid wall. The thin perforated barrier model is further considered for examining the radiation aspect while considering its slow motion. For various porous-effect parameters of the barrier, the amplitude ratio of the radiated potential is investigated, and it is clearly observed that higher frequency significantly lowers the amplitude for both free surface and interfacial propagating modes. The impact of the perforated barrier is analysed by investigating the essential hydrodynamic coefficients, namely, added mass and damping coefficient.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3