Enhanced body-force propeller model for non-uniform inflow flow and application to turning circle test of KCS in calm water

Author:

Wang ShuguangORCID,Kim Byungsoo,Zhu Zhang,Kim Yonghwan1ORCID

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul, Republic of Korea

Abstract

An enhanced body-force propeller model is developed to consider propulsion effects without solving the actual propeller geometry in ship maneuvering problems. Application to the KCS turning circle test in calm water (starting at the self-propulsion point) is conducted using the computational fluid dynamics solver, snuMHLFoam, which was developed on OpenFOAM-plus. Based on the original Hough and Ordway model, the non-uniform advance velocity of the propeller is considered using the local velocity on the inflow plane, to compute the local advance coefficient for different parts of the propeller disk when the propeller works behind a hull. The original overset algorithm is revised by introducing more flexible hole-patch definitions for the hole-cutting procedure and an iterative procedure for the donor-searching procedure to remove invalid donors. The motion decomposition of ship and rudder motions with the revised overset is implemented in order to handle body motions effectively. Self-propulsion and turning circle tests for KCS ships are successfully conducted in calm water. The predicted results, including the PI control results, turning trajectory and parameters, ship motions and velocities, forces and moments, and flow and vortical structures are illustrated and compared with the benchmark experimental data, as well as the numerical results obtained using the Maneuvering Modeling Group (MMG) model. The results indicate that the developed body-force propeller model can provide more reasonable predictions of the propulsive performance when the propeller works behind a hull. The snuMHLFoam solver, which is coupled with motion decomposition using the revised overset grid methodology, is validated to be effective and reliable.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Reference36 articles.

1. National Maritime Research Institute (NMRI). Proceeding of Tokyo 2015 a workshop on CFD in ship hydrodynamics, Tokyo, https://t2015.nmri.go.jp/ (2015).

2. Korea Research Institute of Ships & Ocean Engineering (KRISO). Workshop on verification and validation of ship manoeuvring simulation methods (SIMMAN 2020), https://simman2020.kr (benchmark data only, 2020)

3. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids

4. Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering

5. Direct simulation and experimental study of zigzag maneuver of KCS in shallow water

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3