Reliability analysis of mooring lines for floating structures using ANN-BN inference

Author:

Zhao Yuliang1,Dong Sheng1ORCID,Jiang Fengyuan1

Affiliation:

1. College of Engineering, Ocean University of China, Qingdao, P. R. China

Abstract

The harsh marine environment is a significant threat to the safety of floating structure systems. To address this, mooring systems have seen widespread application as an important component in the stabilization of floating structures. This article proposes a methodology to assess the reliability of mooring lines under given extreme environmental conditions based on artificial neural network–Bayesian network inference. Different types of artificial neural networks, including radial basis function neural networks and back propagation neural networks, are adopted to predict the extreme response of mooring lines according to a series of measured environmental data. A failure database under extreme sea conditions is then established in accordance with the failure criterion of mooring systems. There is a failure of mooring lines when the maximum tension exceeds the allowable breaking strength. Finally, the reliability analysis of moored floating structures under different load directions is conducted using Bayesian networks. To demonstrate the proposed methodology, the failure probability of a sample semi-submersible platform at a water depth of 1500 m is estimated. This approach utilizes artificial neural networks’ capacity for calculation efficiency and validates artificial neural networks for the response prediction of floating structures. Furthermore, it can also be employed to estimate the failure probability of other complex floating structures.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3