Direct strength calculation of an aged single-bottom tanker during its towing in waves

Author:

Vladimir Nikola1ORCID,Senjanović Ivo1,Jovanović Ivana1,Tomašević Stipe2,Jurišić Paul3

Affiliation:

1. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia

2. Adriatic Tank Terminals, Ploče, Croatia

3. Croatian Register of Shipping, Split, Croatia

Abstract

Large engineering structures like ships and other floating structures require reliable and complex computations to ensure their structural integrity over their lifetime. This work presents an analysis of the structural integrity of an aged single-bottom tanker during its towing from Croatia to a scrapheap in Turkey. The ship is subjected to wave loading (corresponding to the global response) and towing force (corresponding to the local response). Computations were performed by a general hydro-structure tool that combines a 3D finite element (FE) structural model and a 3D boundary element (BE) model based on the Rankine panel theory, according to the guidelines of the relevant classification society. Time domain simulations were performed to take account of Froude-Krylov nonlinearities for a wave determined within the Equivalent Design Wave (EDW) approach. After the calculation of wave loading and its transfer to the FE model of a ship structure, the stresses were calculated and compared with the allowable values. The local strength assessment of the ship forecastle deck structure was also performed, considering the prescribed towing force as an imposed load. Both the procedure and the used computational tools are general and can be applied to any kind of ship or other floating structure.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Reference18 articles.

1. Rule Note NI691DTR00: Environmental conditions, loads and induced responses of marine units, Bureau Veritas, Paris, December 2022.

2. Probabilistic estimates of corrosion rate of fuel tank structures of aging bulk carriers

3. Ultimate strength of ageing ships

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3