Wave run-up on columns of deepwater platforms

Author:

Thiagarajan Krish P12,Repalle Nitin1

Affiliation:

1. School of Mechanical Engineering, The University of Western Australia, Perth, Australia

2. Department of Mechanical Engineering, The University of Maine, Orono, ME, USA

Abstract

Structural design of novel deepwater platforms is an outcome of innovation and optimization. Structures such as the extended Tension Leg Platform have columns of rectangular cross section, while platforms like spars are circular. An important operational requirement of these platforms is to have restricted heave motion to support vertical rigid risers. An unfortunate consequence of this requirement is the so-called breakwater effect, which results in significant wave run-up on the structure. In high sea states, considerable water could run up along the columns hitting the underside of horizontal deck. Estimating wave run-up on offshore structures is an essential part of deciding the minimum air-gap requirements of such structures. This article examines the run-up on circular and square cylinders using experimental and numerical methods. Experiments were performed in a wave tank on scaled models of prototype circular and square columns. Numerical simulations were conducted using the commercial software FLUENT. It was found that that the results for wave run-up from simulations and experiments were in good agreement and were consistently greater than linear diffraction theory. Numerical comparison between circular and square cylinders showed that the run-up was higher for square geometry for all conditions simulated. This increase was higher in steeper waves due to various nonlinearities in the flow around the structure. An attempt has been made to understand the various nonlinearities in the run-up profile using numerical flow visualization.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Reference17 articles.

1. Floating Offshore Platform Design

2. Observations of wave-structure interaction for a multi-legged concrete platform

3. Paterson F. An investigation into the efficacy of reduction in wave run-up on vertical cylinders in monochromatic waves by application of dampening fins. UG Thesis, School of Oil & Gas Engineering, University of Western Australia, Perth, Australia, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3