Affiliation:
1. Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology (IIEST), Howrah, West Bengal, India
Abstract
An experimental study has been carried out in a laboratory flume to characterize the turbulence structure and turbulence anisotropy in the boundary layer over smooth and rough side walls for both current alone and wave-current combined flow situations. The rough side wall of the flume comprises a train of circular ribs (diameter, k) attached vertically maintaining uniform spacing p along the streamwise direction. The experiments are performed for smooth surface and rough (ribbed) surfaces with p/k = 2, 3, and 4 to reproduce different cases of d-type rib roughness. The effect of wave-current interaction has been investigated by superposing waves of two different frequencies. Time series data of three velocity components are obtained using Acoustic Doppler Velocimeter. At the near wall region, roughness with higher p/k value enhances the level of turbulent intensity and Reynolds stress significantly. In a channel with smooth side wall, the wave-current combined flow produces lesser turbulence intensity than the current alone flow near the wall. However, for a ribbed wall case, the effect is completely opposite that is, wave-current interacting flow induces higher intensities compared to the reference current alone flow. Substantial decline in the turbulent length scales at the near wall region are observed for ribbed walls, which reveals the strong effect of roughness elements on the turbulent structure. Superposition of wave reduces the length scales even more for both smooth and rough wall cases. As the spacing between two ribs ( p/ k ratio) increases, the energy dissipation rate increases. The analysis of anisotropy invariant map demonstrates a reduction of anisotropy in the vicinity of ribbed wall compared to that for a smooth wall. For wave-current combined flow, the anisotropy invariant data of Reynolds stress tensor varies dramatically within the boundary of map, reflecting significant changes in the state of turbulence.
Subject
Mechanical Engineering,Ocean Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献