Assessment of human error contribution to container loss risk under fault tree analysis and interval type-2 fuzzy logic-based SLIM approach

Author:

Erdem Pelin1ORCID,Akyuz Emre2ORCID,Aydin Muhammet3,Celik Erkan4,Arslan Ozcan2

Affiliation:

1. Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, UK

2. Department of Maritime Transportation and Management Engineering, Istanbul Technical University, Tuzla, Istanbul, Turkiye

3. Faculty of Maritime, Recep Tayyip Erdogan University, Rize, Turkiye

4. Department of Transportation and Logistics, Istanbul University, Avcılar, Istanbul, Turkiye

Abstract

Human is a key element of the safety of life on board ships and a significant contributing factor to most of the accidents and incidents in the maritime industry. At this point, risk analysis plays a critical role in ensuring operational safety and maritime transportation sustainability. This paper aims to systematically evaluate how human errors (HEs) contribute to operational risks. Based on this, Fault Tree Analysis (FTA) is combined under an Interval Type-2 Fuzzy Logic environment with Success Likelihood Index Method (SLIM). Whilst the FTA evaluates the criticality of the operational activities, the Interval Type-2 Fuzzy Sets (IT2FS) deals with vagueness and subjectivity in using experts’ judgements, and the SLIM estimates the probabilities for the human error-related basic events. Since container losses can lead to severe damage and catastrophic events in a container terminal, loading operation was investigated as a case study. Safety culture, experience, and fatigue were observed as highly effective factors in crew performance. The obtained results also indicate that this hybrid approach can effectively be applied to determine the operational vulnerabilities in high-risk industries. The paper intends to improve safety control levels and lower losses in the future of maritime container transport besides emphasising the potential consequences of failures and crucial human errors in the operational process.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3