Wave–current interaction on a vertical truncated cylinder floating in finite-depth waters

Author:

Mazarakos Thomas P1,Mavrakos Spyridon A1

Affiliation:

1. Laboratory of Floating Structures and Mooring Systems, National Technical University of Athens, Athens, Greece

Abstract

A new method is developed for solving the diffraction problem around a fixed truncated circular cylinder which is exposed to the action of coexisting wave and current fields with a small but finite current velocity. Linear potential theory is applied and the solution is obtained by using a perturbation expansion for the diffraction potential with respect to the normalized current speed. Because of the axisymmetric geometrical configuration of the examined body, a semi-analytical formulation is used for the treatment of the inhomogeneous free-surface boundary condition involved in the hydrodynamic problem formulation for derivation of the associated perturbation potential. This method results in a Sturm–Liouville problem, which requires the construction of the appropriate Green’s function. The hydrodynamic forces are obtained after evaluation of the pressure field around the cylinder. The calculated results compare very well with numerical predictions of other investigators and existing experimental data. Finally, the mean second-order drift forces are calculated by superposing on to their zero-current values the corresponding current-dependent first-order corrections, the latter being evaluated using a ‘heuristic’ approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3