A knowledge based hierarchical reliability allocation (HIRAL) approach for shipboard systems

Author:

Cicek Kadir1ORCID

Affiliation:

1. Marine Engineering Department, Maritime Faculty, Istanbul Technical University, Tuzla, Istanbul, Turkey

Abstract

Reliability has become a greater concern in shipboard systems due to increasing amount of technology level, system complexity, and multiple design demands. Enhancement of the shipboard system’s reliability ensures safe and continuous operation onboard a ship. To enhance the reliability of the shipboard system, it is essential to identify each individual component’s reliability. Within this scope, the onerous task of reliability allocation analysis enhances the reliability of shipboard systems through the optimization of component-based designs, construction, and operations. This study proposes a hybrid reliability allocation methodology based on a hierarchical structure with the integration of an analytic hierarchy process (AHP), data envelopment analysis (DEA), and feasibility of objectives (FOO) methods. The proposed methodology provides reliability allocation analyses for systems with any number of components. The study also examines the usefulness of the adaptation of AHP-DEA into reliability allocation analysis. To demonstrate the applicability of the proposed methodology, a case study on the steering gear system is presented.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of current regulations, available technologies, and future trends in the green shipping industry;Ocean Engineering;2023-07

2. Estimation of human error probabilities in marine safety services: The case of lifeboat and davits inspection;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2022-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3