The Numerical Method of Lines facilitates the instruction of unsteady heat conduction in simple solid bodies with convective surfaces

Author:

Campo Antonio1ORCID

Affiliation:

1. Department of Mechanical Engineering, The University of Vermont, Burlington, VT, USA

Abstract

The present study on engineering education addresses the Method of Lines and its variant the Numerical Method of Lines as a reliable avenue for the numerical analysis of one-dimensional unsteady heat conduction in walls, cylinders, and spheres involving surface convection interaction with a nearby fluid. The Method of Lines transforms the one-dimensional unsteady heat conduction equation in the spatial and time variables x, t into an adjoint system of first-order ordinary differential equations in the time variable t. Subsequently, the adjoint system of first-order ordinary differential equations is channeled through the Numerical Method of Lines and the powerful fourth-order Runge–Kutta algorithm. The numerical solution of the adjoint system of first-order ordinary differential equations can be carried out by heat transfer students employing appropriate routines embedded in the computer codes Maple, Mathematica, Matlab, and Polymath. For comparison, the baseline solutions used are the exact, analytical temperature distributions that are available in the heat conduction literature.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Education

Reference18 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transient nonlinear heat conduction in a slab with temperature-dependent thermal conductivity: Integral transform and lumped model solutions;International Communications in Heat and Mass Transfer;2024-11

2. Application of the method of lines to the wave equation for simulating vibrating strings;International Journal of Mathematical Education in Science and Technology;2024-07-22

3. On the stability and convergence of numerical solutions;Numerical Heat Transfer, Part B: Fundamentals;2020-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3