Embedding numerical methods and MATLAB programming in a fluid mechanics course for undergraduates in engineering technology

Author:

Jin Congrui1ORCID

Affiliation:

1. Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX, USA

Abstract

Undergraduate students in engineering technology are typically not required to take any courses on numerical methods or computational techniques and thus have little or no knowledge of many basic numerical approaches commonly used in engineering disciplines, such as root finding, curve fitting, numerical integration, and numerical differentiation. In addition, they are only required to take one introductory level programming course and thus usually experience difficulty when working on course projects involving extensive programming. However, the industry is demanding different skillsets than the ones that were expected just a decade ago. Numerical and programming skills are becoming increasingly important. In this case study, the effectiveness of embedding numerical methods and MATLAB programming in MMET 303 Fluid Mechanics and Power, a four-credit junior-level required course offered every semester for undergraduates at the Department of Engineering Technology and Industrial Distribution at Texas A&M University, was assessed. A series of learning modules were purposefully designed and implemented as a trial test in the classes offered in the semester of Fall 2023. Instructor's observation, submitted assignments, and survey results were analyzed. The results suggested that embedding numerical methods and associated MATLAB programming into a required course enhanced students’ analytical skills of tackling practical problems, helping them become better prepared as they move on into the industrial companies or the graduate schools.

Publisher

SAGE Publications

Reference14 articles.

1. Online source: https://engineering.tamu.edu/etid/about/index.html.

2. Advanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Friction

3. Jupyter Notebooks for the study of advanced topics in Fluid Mechanics

4. Online Source: https://www.rheologylab.com/articles/emulsion-stability/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3