Teaching Power Cycles by Comparative First- and Second-Law Analysis of Their Evolution

Author:

Dunbar William R.1,Lior Noam1

Affiliation:

1. University of Pennsylvania, Department of Mechanical Engineering and Applied Mechanics, Philadelphia, PA 19104-6315, USA

Abstract

The teaching of power cycles in courses of thermodynamics or thermal engineering was traditionally based on first-law analysis. Second-law analysis was typically taught later, and not integrated with it. This approach leaves the student ignorant of the effect of operating parameters and cycle modifications on the accompanying exergy (availability) magnitudes and component irreversibilities, which are necessary for evaluating the potential for further system improvements. It also leaves many of the students with an ambiguous understanding of the exergy concept and its use. Consonant with the gradual changes in this educational approach, which increasingly attempt to integrate first- and second-law analysis, this paper recommends a strategy which integrates exergy analysis into the introduction and teaching of energy systems, demonstrated and made didactically appealing by an examination of the historical evolution of power plants, emphasizing the objectives for improvements, accomplishments, constraints, and consequently the remaining opportunities. Important conclusions from exergy analysis, not obtainable from the conventional energy analysis, were emphasized. It was found that this approach evoked the intellectual curiosity of students and increased their interest in the course.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Education

Reference25 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On illustrating Carnot’s general proposition by means of reversible Stirling engines;International Journal of Mechanical Engineering Education;2020-11-25

2. Thermodynamics education: Is present coverage of exergy sufficient and appropriate?;Exergy, An International Journal;2002-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3