Affiliation:
1. University of Pennsylvania, Department of Mechanical Engineering and Applied Mechanics, Philadelphia, PA 19104-6315, USA
Abstract
The teaching of power cycles in courses of thermodynamics or thermal engineering was traditionally based on first-law analysis. Second-law analysis was typically taught later, and not integrated with it. This approach leaves the student ignorant of the effect of operating parameters and cycle modifications on the accompanying exergy (availability) magnitudes and component irreversibilities, which are necessary for evaluating the potential for further system improvements. It also leaves many of the students with an ambiguous understanding of the exergy concept and its use. Consonant with the gradual changes in this educational approach, which increasingly attempt to integrate first- and second-law analysis, this paper recommends a strategy which integrates exergy analysis into the introduction and teaching of energy systems, demonstrated and made didactically appealing by an examination of the historical evolution of power plants, emphasizing the objectives for improvements, accomplishments, constraints, and consequently the remaining opportunities. Important conclusions from exergy analysis, not obtainable from the conventional energy analysis, were emphasized. It was found that this approach evoked the intellectual curiosity of students and increased their interest in the course.
Subject
Mechanical Engineering,Education
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献