Aerodynamic design optimization of a NACA 0012 airfoil: An introductory adjoint discrete tool for educational purposes

Author:

Ntantis Efstratios L.1ORCID,Xezonakis Vasileios2

Affiliation:

1. Aerospace Department, Amity University Dubai, Dubai, UAE

2. University of East London, Docklands Campus, London, UK

Abstract

The adjoint method is a powerful tool in high-fidelity aerodynamic shape optimization, providing an efficient means to compute derivatives of a target function with respect to various design variables. This paper delves into the discrete adjoint method. It offers a theoretical exploration of its implementation as an innovative tool for calculating partial derivatives (sensitivities) related to objective functions and design variables, specifically applied to a subsonic NACA0012 airfoil. The study conducts a qualitative evaluation using a designated test case, considering specified Mach number and Reynolds number values of 0.297 and 6,667 million, respectively. The Spalart-Allmaras turbulence model is employed to enhance computational cost efficiency. The results affirm the efficacy of the introduced tool, DAFoam, showcasing its ability to generate optimal geometries. The achieved performance optimization is evidenced by minimizing the drag coefficient value (CD) to an impressive 0.0131. While this research does not delve into the post-processing of sensitivity calculations, it acknowledges the potential for future investigations. The primary objective and novelty of this study is to provide the elementary background of the state of the art test case (NACA0012) within the subsonic regime, introducing the pioneer discrete adjoint aerodynamic optimization methodology (DAFoam) with the potential to explore its higher order capabilities in other aerodynamic related studies. Furthermore, it caters the educational needs of both graduate students and engineers in this exciting field. By presenting this cutting-edge methodology, it contributes to future advancements for the aerodynamicists in terms of optimal solutions.

Publisher

SAGE Publications

Reference65 articles.

1. Numerical Study on a Supersonic Flow around a Bullet

2. Slotnick J, Khodadoust A, Alonso A, et al. CFD Vision 2030 study: a path to revolutionary computational aerosciences. Technical Report CR–2014-218178, NASA, https://ntrs.nasa.gov/citations/20140003093 (2014).

3. On optimum profiles in Stokes flow

4. Aerodynamic design via control theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3