Development of a two-stage Lau-Wan Wankel pump/mixer

Author:

Lim BY12,Lau MWS12,Wan S3,Leong J3,Lim A3,Huo D1,Goh KL12

Affiliation:

1. School of Mechanical & Systems Engineering, Newcastle University, Newcastle Upon Tyne, UK

2. NUInternational Singapore Pte Ltd, SIT Building @ Nanyang Polytechnic, Singapore

3. Institute of High Performance Computing, #16-16 Connexis North, Singapore

Abstract

A two-stage Wankel pump/mixer device has been designed and prototyped as part of a final-year undergraduate project. Based on the concept of the Wankel rotary engine, the device features a ‘two-apex’ rotor instead of the conventional ‘three-apex’ rotor. The novelty of the device addresses a unique axis of rotation for the rotor, driven by a crankshaft. In particular, in order for the motion of the rotor to exhibit a trajectory to consistency with an epitrochoid, the rotational motion is guided by the linear motion of a pin sliding along a groove within the rotor; this novel linear-to-rotational motion approach is known as the Lau-Wan design. The feasibility of the Lau-Wan design has been demonstrated in an earlier project. Here, the prototype comprises two Lau-Wan pump/mixers serially connected to form a two-stage system—the aim is to study the effectiveness of the mixing of fluids as the fluids flow from one stage to the other when both rotors are rotating ‘in phase’. A simple drive system was implemented by (a) coupling the two crankshafts using a timing belt and (b) coupling a low-speed motor to one of the two stages using a timing belt. Experiment was conducted to analyze the flow pattern of liquids in both stages using two types of liquid with different colors (and a slight variation in the viscosity). The flow pattern within the chamber of the first stage shows somewhat similar mixing patterns to those predicted by computational fluid models. We note that (1) the extent of drawing the fluid into the chamber, followed by compressing the fluid, depends on the rotor position, (2) laminar flow dominates the flow pattern during the suction and compressive actions of the rotor but micro-turbulence occurs in the regions adjacent to the rotor, (3) when the rotor rotates, the number of laminar layers somewhat increases with time. On the other hand, the second stage appears to be very efficient at drawing one of the two fluids; this may be attributed to the viscosity of the fluids. Within the limitations of the preliminary design, these characteristics suggest that the prototype exhibits a positive displacement pumping action, as well as mixing action.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3