Resting-state Quantitative EEG Spectral Patterns in Migraine During Ictal Phase Reveal Deviant Brain Oscillations: Potential Role of Density Spectral Array

Author:

Ojha Pooja1ORCID,Panda Samhita2

Affiliation:

1. Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India

2. Department of Neurology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India

Abstract

Background. Migraine headache may have a substantial bearing on the brain functions and rhythms. Electrophysiological methods can detect changes in brain oscillation. The present work examined the frequency band power through quantitative electroencephalogram (qEEG) and density spectral array (DSA) to elucidate the resting state neuronal oscillations in migraine. Methods. Clinical details were inquired, and EEG was recorded in migraineurs and healthy controls. The acquired data were analyzed to determine power spectral density values and obtain DSA graphs. The absolute and relative powers for the alpha, theta, and delta frequencies in frontocentral, parieto-occipital, and temporal regions were determined. A correlation of significant EEG findings with clinical features of migraine was sought. Results. Forty-five participants were enrolled in the study. The spectrum analysis revealed an increase in the relative theta power ( P < .001) and a reduction in relative alpha power ( P < .001) in the observed cortical areas among the migraineurs as compared to the healthy controls. Relative delta power was increased over the frontocentral region ( P = .001), slightly more on the symptomatic side of the head. In addition, frontocentral delta power had a moderate positive correlation (r = .697, n = 22, P = .000) with migraine severity. Conclusion. The study supports the evidence of a neuronal dysfunction existing in the resting state during the ictal phase of migraine. qEEG can reveal these aberrant oscillations. Utility of DSA to depict the changes in brain activity in migraine is a potential area for research. The information can help formulate new therapeutic strategies towards alteration in cortical excitability using brain stimulation techniques.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3