On the Origin and Suddenness of Absences in Genetic Absence Models

Author:

van Luijtelaar Gilles1,Sitnikova Evgenia2,Luttjohann Annika1

Affiliation:

1. Department of Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands

2. Institute for Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Butlerova 5A, Moscow, Russia

Abstract

The origin of spike-wave discharges (SWDs), typical for absences, has been debated for at least half a century. While most classical views adhere to a thalamic oscillatory machinery and an active role of the cortex in modifying normal oscillations into pathological SWDs, recent studies in genetic models such as WAG/Rij and GAERS rats have challenged this proposal. It seems now well established that SWDs originate from the deep layers of the somatosensory cortex, that the activity quickly spreads over the cortex and invades the thalamus. The reticular thalamic nucleus and other thalamic nuclei provide a resonance circuitry for the amplification, spreading and entrainment of the SWDs. Conclusive evidence has been found that the changed functionality of HCN1 channels is a causative factor for the changes in local excitability and age-dependent increase in SWD. Furthermore, upregulation of two subtypes of Na+ channels, reduction of GABAB and mGlu 2/3 receptors might also play a role in the local increased excitability in WAG/Rij rats. Signal analytical studies have also challenged the view that SWDs occur suddenly from a normal background EEG. SWDs are recruited cortical responses and they develop from increasing associations within and between cortical layers and subsequently subcortical regions, triggered by the simultaneous occurrence of theta and delta precursor activity in the cortex and thalamus in case both structures are in a favorable condition, and increased directional coupling between cortex and thalamus. It is hypothesized that the cortex is the driving force throughout the whole SWD and is also responsible for its end.

Publisher

SAGE Publications

Subject

Clinical Neurology,Neurology,General Medicine

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3