Brain Network Connectivity and Topological Analysis During Voluntary Arm Movements

Author:

Storti Silvia Francesca1,Formaggio Emanuela2,Manganotti Paolo3,Menegaz Gloria1

Affiliation:

1. Department of Computer Science, University of Verona, Verona, Italy

2. Department of Neurophysiology, Foundation IRCCS San Camillo Hospital, Venice, Italy

3. Department of Medical, Surgical and Health Sciences, Clinical Neurology Unit, Cattinara University Hospital, Trieste, Italy

Abstract

Functional connectivity estimates the temporal synchrony among functionally homogeneous brain regions based on the assessment of the dynamics of topologically localized neurophysiological responses. The aim of this study was to investigate task-related changes in brain activity and functional connectivity by applying different methods namely event-related desynchronization (ERD), coherence, and graph-theoretical analysis to electroencephalographic (EEG) recordings, for comparing their respective descriptive power and complementarity. As it is well known, ERD provides an estimate of differences in power spectral densities between active (or task) and rest conditions, functional connectivity allows assessing the level of synchronization between the signals recorded at different scalp locations and graph analysis enables the estimation of the functional network features and topology. EEG activity was recorded on 10 subjects during left/right arm movements. The theta, alpha, and beta bands were considered. Conventional analysis showed a significant ERD in both alpha and beta bands over the sensorimotor cortex during the left arm movement and in beta band during the right arm movement, besides identifying the regions involved in the task, as it was expected. On the other hand, connectivity assessment highlighted that stronger connections are those that involved the motor regions for which graph analysis revealed reduced accessibility and an increased centrality during the movement. Jointly, the last two methods allow identifying the cortical areas that are functionally related in the active condition as well as the topological organization of the functional network. Results support the hypothesis that network analysis brings complementary knowledge with respect to established approaches for modeling motor-induced functional connectivity and could be profitably exploited in clinical contexts.

Publisher

SAGE Publications

Subject

Clinical Neurology,Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3