Wavelet Coherence Model for Diagnosis of Alzheimer Disease

Author:

Sankari Ziad1,Adeli Hojjat2,Adeli Anahita3

Affiliation:

1. Departments of Biomedical Engineering, Electrical and Computer Engineering, Ohio State University, OH, USA

2. Departments of Biomedical Engineering, Biomedical Informatics, Civil and Environmental Engineering and Geodetic Science, Electrical and Computer Engineering, Neurological Surgery, and Neuroscience, Ohio State University, Columbus, OH, USA

3. Department of Neurology, Mayo Clinic, Rochester, MN, USA

Abstract

This article presents a wavelet coherence investigation of electroencephalograph (EEG) readings acquired from patients with Alzheimer disease (AD)  and healthy controls. Pairwise electrode wavelet coherence is calculated over each frequency band (delta, theta, alpha, and beta). For comparing the synchronization fraction of 2 EEG signals, a wavelet coherence fraction is proposed which is defined as the fraction of the signal time during which the wavelet coherence value is above a certain threshold. A one-way analysis of variance test shows a set of statistically significant differences in wavelet coherence between AD and controls. The wavelet coherence method is effective for studying cortical connectivity at a high temporal resolution. Compared with other conventional AD coherence studies, this study takes into account the time–frequency changes in coherence of EEG signals and thus provides more correlational details. A set of statistically significant differences was found in the wavelet coherence among AD and controls. In particular, temporocentral regions show a significant decrease in wavelet coherence in AD in the delta band, and the parietal and central regions show significant declines in cortical connectivity with most of their neighbors in the theta and alpha bands. This research shows that wavelet coherence can be used as a powerful tool to differentiate between healthy elderly individuals and probable AD patients.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology,General Medicine

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3