Ikelos-RWA. Validation of an Automatic Tool to Quantify REM Sleep Without Atonia

Author:

Papakonstantinou Alexandra12,Klemming Jannis3,Haberecht Martin2,Kunz Dieter12,Bes Frederik12ORCID

Affiliation:

1. Sleep Research & Clinical Chronobiology, Institute of Physiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freien Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

2. Clinic for Sleep- and Chronomedicine, St. Hedwig-Krankenhaus, Berlin, Germany

3. Department of Ophthalmology, University Medical Center Goettingen, Göttingen, Germany

Abstract

Study Objectives. To present and evaluate an automatic scoring algorithm for quantification of REM-sleep without atonia (RWA) in patients with REM-sleep behaviour disorder (RBD) based on a generally accepted, well-validated visual scoring method, (“Montreal” phasic and tonic) and a recently developed, concise scoring method (Ikelos-RWA). Methods. Video-polysomnographies of 20 RBD patients (68.2 ± 7.2 years) and 20 control patients with periodic limb movement disorder (65.9 ± 6.7 years) were retrospectively analysed. RWA was estimated from chin electromyogram during REM-sleep. Visual and automated RWA scorings were correlated, and agreement ( a) and Cohen's Kappa ( k) calculated for 1735 minutes of REM-sleep of the RBD patients. Discrimination performance was evaluated with receiver operating characteristic (ROC) analysis. The algorithm was then applied on the polysomnographies of a cohort of 232 RBD patients (total analysed REM-sleep: 17,219 minutes) and evaluated, while correlating the different output parameters. Results. Visual and computer-derived RWA scorings correlated significantly (tonic Montreal: rTM = 0.77; phasic Montreal: rPM = 0.78; Ikelos-RWA: rI = 0.97; all p < 0.001) and showed good to excellent Kappa coefficients ( kTM = 0.71; kPM = 0.79; kI = 0.77). The ROC analysis showed high sensitivities (95%-100%) and specificities (84%-95%) at the optimal operation points, with area under the curve (AUC) of 0.98, indicating high discriminating capacity. The automatic RWA scorings of 232 patients correlated significantly ( rTM{I} = 0.95; rPM{I} = 0.91, p < 0.0001). Conclusions. The presented algorithm is an easy-to-use and valid tool for automatic RWA scoring in patients with RBD and may prove effective for general use being publicly available.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3